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Abstract

This paper presents a novel Robust £,,-norm Singular Value Decomposition (RP-
SVD) method for analyzing two-way functional data. The proposed RP-SVD
is formulated as a £,-norm based penalized loss minimization problem where a
robust loss function is employed to measure the reconstruction error of a low-
rank matrix approximation of the data. An appropriately defined £,,-norm penalty
function is used to ensure smoothness along each of the two functional domains.
The Alternating Direction Method of Multipliers is then used to find appropriate
solutions to this problem. The method achieves higher accuracy in face image
reconstruction compared to the state-of-the-art SVD and its extensions, i.e. Robust
SVD, Regularized SVD and Robust Regularized SVD, in various scenarios.

1 Introduction

The Singular Value Decomposition (SVD) has become one of the basic and most important tools
of modern numerical analysis, particularly numerical linear algebra. The SVD problem [1] can
be simply solved in a regular closed form using a ¢>-norm cost function. However, the ¢5-norm
process treats all input data equally and doesn’t have ability to detect outliers or sparse components.
Therefore, SVD subspaces are sensitive to outliers and noisy values from given input data. Fig.
[I] shows an example of the limitations in SVD and other previous SVD extensions. When input
data is free of noise or outliers, SVD can generate a good subspace to represent the data distribution.
However, when the data contains some noise or outliers, this subspace contains a structure distortion;
hence it doesn’t represent well the data distribution. In addition, there is no mechanism to deal with
missing values in the regular SVD representation. The decomposed matrix X must be completely
filled with values for all d x n elements; otherwise the problem is unsolvable.

This paper presents a novel Robust £,-norm (0 < p < 1) Singular Value Decomposition (RP-
SVD) approach to solve the SVD problem approximately using £,-norm solution. Far apart from
the traditional SVD approaches, our proposed RP-SVD method is able to deal with input matrices
containing missing values and can find optimal solutions for the matrix completion problems. In
addition, it can also find optimal subspaces that are robust to noise and outliers. Compared to
previous £1-norm methods (see section[2)) , our RP-SVD approach can find higher sparsity solutions
thank to the £,-norm in the objective function. The Alternating Direction Method of Multipliers
(ADMM) is employed to find appropriate solutions.

2 Related Work

The SVD was established for real square matrices in the 1870’s by Beltrami and Jordan and for
general rectangular matrices by Eckart and Young (reviewed in [[L]). In this section, we review recent
SVD studies. Huang et al. [3]] proposed a regularized SVD (RSVD) for dimension reduction and
feature extraction. RSVD was posed as a low-rank matrix approximation problem with a squared
loss function on reconstruction errors and a quadratic penalty on the factorized solutions. However,
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Figure 1: (a) and (b) show principal directions obtained by using SVD, ROBSVD [2], RSVD [3],
and our proposed RP-SVD on the toy data set with outliers and noise. (c) Illustration of common
convex and non-convex regularized functions.

RSVD is also sensitive to outliers as showed in Fig. [T} Liu et al [2]] presented a robust SVD
(ROBSVD) that can cope with outliers and impute missing values for microarray data. Bai et al.
[4]] proposed a supervised SVD (SSVD), less sensitive to outliers, to improve the robustness of
analyzing functional Magnetic Resonance Imaging (fMRI) brain images. Zhang et al. [5]] developed
a robust regularized SVD (ROBRSVD) method to lessen the effects of outliers. ROBRSVD is a
robustified RSVD method using a robust loss function instead of the non-robust squared-error loss
as in [3]. It can also be considered as smoothing of a robust SVD [2] method with the penalty term.
Zhang et al. suggested to iteratively impute the missing values by replacing them with values from
the previous iteration, then apply the iterative reweight least square (IRLS) algorithm to solve it.

3 Our Proposed Robust /,-norm SVD (RP-SVD)

Given a matrix X € R%*" that contains missing values, noise and outliers, this work aims to intro-
duce a novel RP-SVD approach using £,,-norm, where 0 < p < 1, to further enhance the robustness
of SVD to deal with outliers and noise. The SVD problem can be then formulated as follows:

auin [M© (X - USV)|, st. U'U=LV'V=1I (1)

Far apart from the traditional SVD method, our proposed RP-SVD approach presented in Eqn.
(I) allows to decompose an input matrix X containing missing values and outliers denoted by the
weight matrix M, where M(i, j) > 0 if the data point X; ; exists, otherwise M(i,j) = 0. ®
denotes the component-wise multiplication. Generally, Eqn. is a non-convex problem. Let
E = UXV' = LR, where L is an orthogonal matrix, i.e. L'L =1, then IIE||l« = |ILR]|« = [|R]|+-
The objective function is reformulated as follows:

min [M® (X —E)[, + Alo(R)[l, st E=LR, L'L=1I 2)
where the parameter A controls the trade-off between trace norm regularization and reconstruction

fidelity. To solve the problem in Eqn. (2), we first linearize it by using first order Taylor expansion
to form an equivalent form as follows:

ming g Y, 9 (Mij(Xij —Eij) +AY,9(0;(R)) st E=LRLTL=1I 3)
where g(-) = | - |P. Then, the corresponding augmented Lagrangian function is derived as follows:
Lo(LREY) 2575, g (M ;(Xi; —EF))) + (Vg (Mi;(Xi; — EF))) M j (Ef; —Eij))

+AY; 9 (0;(RY)) + (Vg (0;(RY) ,0;(R) — 0j(R")) + < Y,E—~ LR > +5|[E~ LR[}: (4)

where Y is the Lagrange multipliers ensuring the linear constraints, 3 > 0 is the penalty parameter
for the violation of the constraints. The problem defined in Eqn. can be solved using ADMM by
iteratively solving the following convex optimization sub-problems.

Step 1 - Given R* and EF, find L*!: By fixing R* and E" in the iteration %, L*** can be updated
by solving the sub-problem as follows:

miny, 2 ||(E¥ + 37'Y") —LR")||7 st. L'L=1 5)



The global optimal solution of this optimization problem can be found by first applying SVD as
[U,S, V'] = sud((EF + 8='Y*)RFT). Then, L*™ can be updated as [6], L*™ < U'V'".

Step 2 — Given L**! and Ek, find R**': In the second step, given L**! and Ek, R**! can be
found using the following formula,

ming AY; vfoj+ < Y, EF — LMIR > +4||EF — L*HR|% (©6)

where v;-“ = Vg(o,;(R¥)) and o is the j-th singular values of the matrix R*. Since L*! is orthog-
onal, Eqn. (6) can be rewritten as,

ming AB™" 3, vf o + 3|R = LT (RS 4 7RI ™

Based on Theorem 1 in [7]], the solution of (/) is given by the weighted singular value threshold-
ing (WSVT). In WSVT, the SVD is first employed, [U’',S’, V'] = svd(L*™'T(EF + g=1Y*)),
the optimal values of R**! can be then updated by shrinking the diagonal matrix S’ via the soft-
thresholding (shrinkage) operator T, [z] as, R**! « U'T, Btok [S'IV'T, where the weights v% are
updated at each iteration as v;-“ = p(a;-c +¢)P71(0 < € < 1). The shrinkage operator is defined as
T,[z] = maxz(|z| — 7,0)sgn(x), where sgn(x) is the sign function.

Step 3 — Given L**! and R**!, find E**!: Given L**! and R**!, E**! can be updated using the
shrinkage technique in [6],

ming Y,  WE; (M, (X ; — Eij)) + §|E — (LFF'RMT — 871YH) |17 ®)

where W}, = Vg (M} ;(X;; —E}})) = p(M};(X;; — EJ ;) + €)P~1. Therefore, the observed
M © E and missing values M ® E (M is the complement of M) in E can be updated as follows,

{ MOE MO (X - Tg1yw[X — (LFF'RM — g71YH)) ©

MOE + M@ (LFHRFF! — g=1yk)
Step 4: Update Lagrange multiplier: Y*™! = Y* + g(EFt! — LFFIRF )

4 Experimental Evaluation

4.1 Synthetic Data

In this experiment, an input matrix Xo € R*09%5%0 i randomly generated. The elements Xo; ;
are drawn from an uniform distribution between [—1, 1] independently. 20% of the number of ele-
ments are then randomly selected as missing values by setting the corresponding entries in the mask
matrix M to zeros. In addition, uniformly distributed noise over [—5, 5] are added to 10% of the
observed elements in X as outliers and Gaussian noise with ¢ = 0.01 are also added to all ele-
ments to form a new noisy matrix X. The comparison algorithms, i.e. SVD (Matlab), ROBSVD [2],
RSVD [3]], ROBRSVD [5] and our proposed RP-SVD, factorize the noisy/outlier matrix X into sub-
spaces. Then, the reconstructed matrices X are computed. The reconstruction errors are measured
as OFRy, = ||Xo — X||1/(m x n). Table 1 shows the average errors and processing time (s) on 500
different matrices X. We also perform two experiments with various missing data and outlier ratios.
First, the missing data ratios are set from 10% to 90%. The average ¢;-norm errors (OER, ) over
observed entries are recorded with the outlier ratios fixed at 20%. The first experiment is repeated
100 times for each level of missing data. Then, the missing data ratios are fixed to be 30%, and the
outlier ratio is varied from 10% to 25%. Similarly, we repeat 100 times for each outlier ratio level.
The results (the average ¢1-norm errors in log scale) of the experiments are shown in Fig. [2|(a).

4.2 Eigenfaces

One of the classical applications of SVD is facial image analysis using eigenfaces. The eigenface
displays the underlying low K-dimensional subspace best describing the training data. In this ex-
periment, we aim at showing the robustness of our RP-SVD method in reconstructing eigenface
decomposition in the presence of outliers. A set of 30 randomly selected 64 x 64 face images from



Table 1: Evaluation Results on Synthetic Data.

Methods Xo Xo + noise Xo + outlier Xo + noise + outlier
OER,, [ Time | OFRy,, [ Time | OFR,, [ Time | OER,, | Time
1.6e-15 0.005 05 05
SVD (£13e-16) | 022 | ipae6) | OO0 | (i3ez) | 00 | 1334y | 04
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Figure 2: Experiments with outlier and missing data. (a) the average errors on synthetic data with
varying missing data and outlier ratios. (b) An experiment on Extended Yale-B face database.

the Extended Yale B face database [8]] are used as training set (i.e. a 4096 x 30 training data matrix).
A 32 x 32 outlier image (i.e. an image of a football) is added to a random training image at a random
location. The comparison methods, i.e. SVD, ROBSVD, RSVD and RP-SVD, are then applied to
reconstruct the occluded facial image with K = 10. We repeat this procedure for 100 times. Fig. [2]
(b) shows the resulting reconstructed facial images using those methods and the average PSNR also
reported in this figure. Our method achieves the best PSNR value (52.79).

4.3 Structure from Motion

This experiment evaluates the proposed method in a real-world application named Structure from
Motion. The standard Dinosaur sequence EI containing projections of 195 points tracked over 36
views, was used in this experiment. Each tracked point is located in at least 16 views while it
is occluded in other views. Thus, the measurement matrix has 74.26% of its elements missing
and the originally measured tracks are illustrated in Fig. El (a). Fig. El (b), (c¢) and (d) shows the
results obtained by Damped Newton [9] method, Damped Wiberg method [10] and our RP-SVD
method, respectively. We should have closed and circular tracks from the sequence since the views
of Dinosaur was captured while rotating it. Our method achieves the best reconstructions with more
closed circular tracks.

Figure 3: The experiment on the Dinosaur sequence reconstruction (a) shows the original tracks in
the measurement matrix. (b) (c) and (d) show the recovered tracks using the Damped Newton [9],
Damped Wiberg [10] and our RP-SVD method.

Yavailable from http://www.robots.ox.ac.uk/~vgg/data/data-mview.html


http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

5 Conclusions

This paper has presented a RP-SVD method for analyzing two-way functional data. Our proposed
RP-SVD method is evaluated in various applications, i.e. noise and outlier removal, estimation of
missing values, structure from motion reconstruction and facial image reconstruction. We show that
RP-SVD method can achieve better results compared to the state-of-the-art SVD and its extensions.
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